正运动学

DH 法

Step 1: Define Joint Parameters

Define the joint parameters:

  • \(\theta_i\): Joint angle

  • \(d_i\): Link offset

  • \(a_i\): Link length

  • \(\alpha_i\): Link twist

Step 2: Construct Transformation Matrix

For each link \(i\), construct the transformation matrix \(T_i\) using the Denavit-Hartenberg parameters:

\[\begin{split} T_i = \begin{bmatrix} \cos \theta_i & -\sin \theta_i \cos \alpha_i & \sin \theta_i \sin \alpha_i & a_i \cos \theta_i \\ \sin \theta_i & \cos \theta_i \cos \alpha_i & -\cos \theta_i \sin \alpha_i & a_i \sin \theta_i \\ 0 & \sin \alpha_i & \cos \alpha_i & d_i \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \end{split}\]

Step 3: Compute Overall Transformation

Multiply the individual transformation matrices to get the overall transformation matrix \(T\):

\[ T = T_1 \cdot T_2 \cdot \cdots \cdot T_n \]

Step 4: Extract Position and Orientation

Extract the position \((x, y, z)\) and orientation from the final transformation matrix \(T\):

\[\begin{split} \begin{bmatrix} x \\ y \\ z \\ \end{bmatrix} \quad \text{and} \quad R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \\ \end{bmatrix} \end{split}\]

运动向量法